| Literatürler Hematoloji Uzmanlık Derneği
Literatür Detay Bilgisi
Repairing skeletal muscle: regenerative potential of skeletal muscle stem cells

Yazarlar : Francesco Saverio Tedesco, Arianna Dellavalle et al

Yayın : The Journal of Clinical Investigation

Yayın Yılı : 2014

Pubmed Linki : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2798695/

Konu : Rejeneratif Tıp

Literatür İçeriği :  Skeletal muscle damaged by injury or by degenerative diseases such as muscular dystrophy is able to regenerate new muscle fibers. Regeneration mainly depends upon satellite cells, myogenic progenitors localized between the basal lamina and the muscle fiber membrane. However, other cell types outside the basal lamina, such as pericytes, also have myogenic potency. Here, we discuss the main properties of satellite cells and other myogenic progenitors as well as recent efforts to obtain myogenic cells from pluripotent stem cells for patient-tailored cell therapy. Clinical trials utilizing these cells to treat muscular dystrophies, heart failure, and stress urinary incontinence are also briefly outlined.

Introduction

It has been known for more than a century that skeletal muscle, the most abundant tissue of the body, has the ability to regenerate new muscle fibers after it has been damaged by injury or as a consequence of diseases such as muscular dystrophy (1). Muscle fibers are syncytial cells that contain several hundred nuclei within a continuous cytoplasm. Therefore, whether the process of regeneration depends upon the fusion of mononucleated precursor cells or upon the fragmentation of dying muscle fibers, which release new cells, remained controversial for a long time, even after the demonstration by Beatrice Mintz and Wilber Baker (2) that multinucleated fibers are formed by the fusion of single cells. In 1961, Alexander Mauro (3) observed mononuclear cells between the basal lamina that surrounds each muscle fiber and the plasma membrane of the muscle fiber and named them satellite cells (SCs) (Figure (Figure1).1). SCs were later accepted to be, and are still considered today, the main players in skeletal muscle regeneration. SCs also contribute to the postnatal growth of muscle fibers, which in adults contain approximately 6–8 times more nuclei than in neonates, all of them being irreversibly postmitotic.

Figure 1
Asymmetric cell division during activation of SCs.

In addition to SCs, other progenitors located outside the basal lamina, including pericytes, endothelial cells, and interstitial cells, have been shown to have some myogenic potential in vitro or after transplantation. The developmental origin of these progenitors is unclear, as is their lineage relationship with SCs, even though they may feed, to some extent, into the SC compartment (4).

There is much interest in understanding the cellular and molecular mechanisms underlying skeletal muscle regeneration in different contexts because such knowledge might help in the development of cell therapies for diseases characterized by skeletal muscle degeneration. These diseases include muscular dystrophy, the term for a group of inherited disorders characterized by progressive muscle wasting and weakness leading to a variable degree of mobility limitation, including confinement to a wheelchair and, in the most severe forms, heart and/or respiratory failure (5). Many muscular dystrophies arise from loss-of-function mutations in genes encoding cytoskeletal and membrane proteins, the most common and severe being Duchenne muscular dystrophy (DMD), which is caused by mutations in the gene encoding dystrophin, an integral part of a complex that links the intracellular cytoskeleton with the extracellular matrix in muscle. Muscular dystrophies are some of the most difficult diseases to treat, as skeletal muscle is composed of large multinucleated fibers whose nuclei cannot divide. Consequently, cell therapy has to restore proper gene expression in hundreds of millions of postmitotic nuclei (6).

In this Review, we discuss recent work indicating the possible existence of a stem/progenitor cell compartment in adult muscle (see also ref. 7) as well as studies related to the derivation of myogenic cells from embryonic and induced pluripotent stem cells (PSCs) for the development of new cell therapy strategies for diseases of skeletal muscle. An overview of clinical trials based upon transplantation of skeletal muscle stem cells is also provided. Neither the role of SCs in aging skeletal muscle nor the SC niche are discussed here due to space constraints, and readers are directed to excellent recent reviews on these topics by Suchitra Gopinath and Thomas Rando (8) and Michael Rudnicki and colleagues (9), respectively.

SCs

Identification and characterization.

The most stringent way to classify cells as SCs remains by determining their anatomical location: SCs are found underneath the basal lamina of muscle fibers, closely juxtaposed to the plasma membrane (3). SCs originate from somites (1011), spheres of paraxial mesoderm that generate skeletal muscle, dermis, and axial skeleton, but the exact progenitor that gives rise to SCs remains to be identified. SCs are present in healthy adult mammalian muscle as quiescent cells and represent 2.5%–6% of all nuclei of a given muscle fiber. However, when activated by muscle injury, they can generate large numbers of new myofibers within just a few days (12). Quiescent SCs (13) express characteristic (although not unique) markers. In the mouse, the most widely used of these markers is the transcription factor paired box 7 (Pax7) (14), which is essential for SC specification and survival (15). In contrast, Pax3 is expressed only in quiescent SCs in a few specific muscle groups such as the diaphragm (16). The basic helix-loop-helix (bHLH) gene myogenic regulatory factor 5 (Myf5) is expressed in the large majority of quiescent SCs, and for this reason, mice expressing nuclear LacZ under the control of the Myf5 promoter (Myf5nlacZ/+ mice) have been useful for identifying and characterizing SCs (17). Many other markers (1829) have been identified and are listed in Table Table1.1. Some of these surface markers are useful for isolating “purified” SC populations by cell sorting, but since each marker is not exclusively expressed on SCs, a combination of different markers must be used. Alternatively, transgenic mice such as those expressing GFP under the control of promoters that drive the expression of genes encoding SC markers — for example, the Pax3 promoter — can be used to isolate SCs (2931). In humans, markers of both quiescent and activated SCs do not fully correspond to those in the mouse, and relatively little is known about them due to the difficulty of obtaining human tissue. For example, although CD34 is a marker of SCs in mice, it does not mark SCs in human muscle (32); and M-cadherin is not as consistent a marker of SCs in humans as it is in mice. Among the more reliable markers of SCs in human muscle is CD56, although it also marks natural killer lymphocytes (33).


Literatür Arşivi

Konusu Aynı Olan Diğer Materyaller
SunumlarVideolarOlgu Tartışması