Yazarlar : Norman PE, Powell JT.
Yayın : Circ Res.
Yayın Yılı : 2014
Pubmed Linki : http://www.ncbi.nlm.nih.gov/pubmed/24436433
Konu : Tromboz
Literatür İçeriği :
Abstract
Vitamin D plays a classical hormonal role in skeletal health by regulating calcium and phosphorus metabolism. Vitamin D metabolites also have physiological functions in nonskeletal tissues, where local synthesis influences regulatory pathways via paracrine and autocrine mechanisms. The active metabolite of vitamin D, 1α,25-dihydroxyvitamin D, binds to the vitamin D receptor that regulates numerous genes involved in fundamental processes of potential relevance to cardiovascular disease, including cell proliferation and differentiation, apoptosis, oxidative stress, membrane transport, matrix homeostasis, and cell adhesion. Vitamin D receptors have been found in all the major cardiovascular cell types including cardiomyocytes, arterial wall cells, and immune cells. Experimental studies have established a role for vitamin D metabolites in pathways that are integral to cardiovascular function and disease, including inflammation, thrombosis, and the renin-angiotensin system. Clinical studies have generally demonstrated an independent association between vitamin D deficiency and various manifestations of degenerative cardiovascular disease including vascular calcification. However, the role of vitamin D supplementation in the management of cardiovascular disease remains to be established. This review summarizes the clinical studies showing associations between vitamin D status and cardiovascular disease and the experimental studies that explore the mechanistic basis for these associations.
Sunumlar | Videolar | Olgu Tartışması |